113 Class Problems: Finite Abelian Groups

All of these questions use the structure theorem

- 1. (a) Describe (up to isomorphism) all Abelian groups of size 15
 - (b) Describe (up to isomorphism) all Abelian groups of size 125.Solutions:

TIST X TIST a) Z'SZ x Z'SZ x Z'SZ ь) ZISZ , ZISZ Z/53Z

2. Describe (up to isomorphism) all Abelian groups of size 72, which contain an element of order 36.

Solutions:

€/227 × 2/22 × 2/322

Z²² × Z²Z

3. Let G be an Abelian group of size n. Assume n has distinct prime factors $\{p_1, \dots, p_k\}$. Prove the following:

 G_{p_i} cyclic $\forall i \Rightarrow G$ cyclic.

Solutions: $|G| = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ $G_{P_i} \quad cydic =) \quad G_{P_i} \cong \mathbb{Z}/p_i^{\alpha_i} \mathbb{Z}$ $=) \quad G \cong \mathbb{Z}/p_1^{\alpha_1} \times \cdots \times \mathbb{Z}/q_k$ $Ord \left((I3_{p_1^{\alpha_1}, \cdots, \alpha_k} \in I3_{p_k^{\alpha_k}}) = Lcm(P_1^{\alpha_1}, \cdots, P_k^{\alpha_k}) = |G|$ $=) \quad G \quad cydic$

4. Let G be Abelian with |G| = n. Prove that if m|n then there exists a subgroup $H \subset G$ of such that |H| = m.

The result holds for any apolic group. A timite Abedian group is the duriest product of apolo groups. $G = G_1 \times G_2 \cdots \times G_r$ Select subgraps $H_1 \subset G_1 , \dots, H_r \subset G_r$ such that $|H_1| \cdots |H_r| = m$ $H_1 \times H_2 \times \cdots \times H_r \subset G$ is a subgroup and $|H_1 \times \cdots \times H_r| = m$.